213 research outputs found

    Module-Based Analysis of Robustness Tradeoffs in the Heat Shock Response System

    Get PDF
    Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the design principles of such modular architectures. In the heat shock response system, the sigma-factor σ(32) is a central regulator that integrates multiple feedforward and feedback modules. Each of these modules provides a different type of robustness with its inherent tradeoffs in terms of transient response and efficiency. We demonstrate how the overall architecture of the system balances such tradeoffs. An extensive mathematical exploration nevertheless points to the existence of an array of alternative strategies for the existing heat shock response that could exhibit similar behavior. We therefore deduce that the evolutionary constraints facing the system might have steered its architecture toward one of many robustly functional solutions

    The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase

    Get PDF
    Copyright: © 2013 Gwynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Wellcome Trust project grant to MD (Reference: 077368), an ERC starting grant to MD (Acronym: SM-DNA-REPAIR) and a BBSRC project grant to PM, NS and MD (Reference: BB/I003142/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Association between anthropometric indices and cardiometabolic risk factors in pre-school children

    Get PDF
    ABSTRACT: The world health organization (WHO) and the Identification and prevention of dietary- and lifestyle-induced health effects in children and infants- study (IDEFICS), released anthropometric reference values obtained from normal body weight children. This study examined the relationship between WHO [body mass index (BMI) and triceps- and subscapular-skinfolds], and IDEFICS (waist circumference, waist to height ratio and fat mass index) anthropometric indices with cardiometabolic risk factors in pre-school children ranging from normal body weight to obesity. Methods: A cross-sectional study with 232 children (aged 4.1 ± 0.05 years) was performed. Anthropometric measurements were collected and BMI, waist circumference, waist to height ratio, triceps- and subscapular-skinfolds sum and fat mass index were calculated. Fasting glucose, fasting insulin, homeostasis model analysis insulin resistance (HOMA-IR), blood lipids and apolipoprotein (Apo) B-100 (Apo B) and Apo A-I were determined. Pearson’s correlation coefficient, multiple regression analysis and the receiver-operating characteristic (ROC) curve analysis were run. Results: 51 % (n = 73) of the boys and 52 % (n = 47) of the girls were of normal body weight, 49 % (n = 69) of the boys and 48 % (n = 43) of the girls were overweight or obese. Anthropometric indices correlated (p 0.68 to AUC < 0.76). Conclusions: WHO and IDEFICS anthropometric indices correlated similarly with fasting insulin and HOMA-IR. The diagnostic accuracy of the anthropometric indices as a proxy to identify children with insulin resistance was similar. These data do not support the use of waist circumference, waist to height ratio, triceps- and subscapular- skinfolds sum or fat mass index, instead of the BMI as a proxy to identify pre-school children with insulin resistance, the most frequent alteration found in children ranging from normal body weight to obesity

    Early growth patterns and cardiometabolic function at the age of 5 in a multiethnic birth cohort: the ABCD study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relation between fetal growth retardation and cardiovascular and metabolic diseases in later life has been demonstrated in many studies. However, debate exists around the potential independent role of postnatal growth acceleration. Furthermore, it is unknown whether a potential effect of growth acceleration on cardiovascular and metabolic function is confined to certain timeframes.</p> <p>The present study assesses the (predictive) role of prenatal and postnatal growth on 5 components of cardiovascular and metabolic function in children aged 5. The potential association of timing of postnatal growth acceleration with these outcomes will be explored.</p> <p>Methods and design</p> <p>Prospective multiethnic community-based cohort study of 8266 pregnancies (Amsterdam Born Children and their Development, ABCD study). Up till now, anthropometry of 5104 children from the original cohort was followed during the first 5 years of life, with additional information about birth weight, pregnancy duration, and various potential confounding variables.</p> <p>At age 5, various components of cardiovascular and metabolic function are being measured. Outcome variables are body size, body composition and fat distribution, insulin sensitivity, lipid profile, blood pressure and autonomic regulation of cardiovascular function.</p> <p>Discussion</p> <p>This study will be one of the first population-based prospective cohort studies to address the association between measures of both prenatal and postnatal growth and various components of cardiovascular and metabolic function. Specific attention is paid to the timing of acceleration in growth and its potential association with the outcome variables. Importantly, the longitudinal design of this study gives us the opportunity to gain more insight into growth trajectories associated with adverse outcomes in later life. If identified as an independent risk factor, this provides further basis for the hypothesis that accelerated growth during the first years of life is a modifiable factor for the prevention of cardiovascular and metabolic disorders in later life. Moreover, identification of specific vulnerable periods during development may reveal suitable timeframes for early interventions.</p

    Mutations Altering the Interplay between GkDnaC Helicase and DNA Reveal an Insight into Helicase Unwinding

    Get PDF
    Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA). Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in complex with single-stranded DNA (ssDNA) suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2–4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI) to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction

    Association of physical exercise and calcium intake with bone mass measured by quantitative ultrasound

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interventions other than medications in the management of osteoporosis are often overlooked. The purpose of this study was to investigate the association of physical activity and calcium intake with bone parameters.</p> <p>Methods</p> <p>We measured the heel T-score and stiffness index (SI) in 1890 pre- and postmenopausal women by quantitative ultrasound (QUS) and assessed physical activity and dietary calcium intake by questionnaire. Participants were divided according to their weekly physical activity (sedentary, moderately active, systematically active) and daily calcium consumption (greater than or less than 800 mg/day).</p> <p>Results</p> <p>SI values were significantly different among premenopausal groups (p = 0.016) and between sedentary and systematically active postmenopausal women (p = 0.039). QUS T-scores in systematically active premenopausal women with daily calcium intake > 800 mg/day were significantly higher than those in all other activity groups (p < 0.05) independent of calcium consumption.</p> <p>Conclusions</p> <p>Systematic physical activity and adequate dietary calcium intake are indicated for women as a means to maximize bone status benefits.</p
    corecore